Switchable highly regioselective synthesis of 3,4-dihydroquinoxalin-2(1H)ones from o-phenylenediamines and aroylpyruvates
نویسندگان
چکیده
3-Acylmethylidene-3,4-dihydroquinoxalin-2(1H)-ones are compounds which possess a wide range of physical and pharmaceutical applications. These compounds can be easily prepared by cyclocondensation of o-phenylenediamines and aroylpyruvates. Unsymmetrically substituted o-phenylenediamines can be obtained form regioisomeric mixtures of 3,4-dihydroquinoxalin-2(1H)-ones. It is often quite difficult to get a pure regioisomer and determine its structure without controlling the reaction selectivity and exploitation of complex NMR techniques (HSQC, NOESY, HMBC). This article examines the regioselectivity of the cyclocondensation between six monosubstituted o-phenylenediamines (-OMe, -F, -Cl, -COOH, -CN, -NO2) and the derivatives of p-chlorobenzoylpyruvate (ester or acid) which we studied. Six regioisomeric 3,4-dihydroquinoxalin-2(1H)-one pairs were selectively prepared and characterised. Based on our experiences, a simplified methodology for determining the structure of the regioisomers was proposed. We developed two general and highly selective methodologies starting from the same o-phenylenediamines and activated 4-chlorobenzoylpyruvates (ester or acid) enabling switching of 3,4-dihydroquinoxalin-2(1H)-one regioselectivity in a predictable manner. For comparison, all regioselective cyclocondensations were performed with the same standardized conditions (DMF, rt, 3 days), differing only by the additives p-TsOH or HOBt/DIC (hydroxybenzotriazole/N,N'-diisopropylcarbodiimide). Both selected methods are simple, general and highly regioselective (72-97%). A mechanism for the regioselectivity was also proposed and discussed. This study can be used as a guide when choosing the most optimal reaction conditions for the synthesis of the desired 3,4-dihydroquinoxalin-2(1H)-one regioisomers with the best selectivity. The demonstrated methodologies in this article may also be applied to differently substituted 3,4-dihydroquinoxalin-2(1H)-ones in general, which could expand the synthetic impact of our results.
منابع مشابه
Synthesis of 3,4-Dihydroquinoxalin-2-Amine, Diazepine-Tetrazole and Benzodiazepine-2-Carboxamide Derivatives with the Aid of H6P2W18O62/Pyridino-Fe3O4
In the current study, a magnetic inorganic–organic nanohybrid material (HPA/TPI-Fe3O4) was produced and used as an efficient, highly recyclable and eco-friendly catalyst for the one-pot and multicomponent synthesis of 3,4-dihydroquinoxalin-2-amine, diazepine-tetrazole and benzodiazepine-2-carboxamide derivatives with high yields and in a short range of time (20–35 min)...
متن کاملAn efficient facile and one-pot synthesis of 2-arylsubstituted benzimidazole derivatives using 1-methyl-3-(2-oxyethyl)-1H-imidazol-3-ium-borate sulfonic acid as a recyclable and highly efficient ionic liquid catalyst at green condition
1-Methyl-3-(2-oxyethyl)-1H-Imidazol-3-ium-Borate Sulfonic Acid ([MOEI]-BSA) was easily prepared and used as a new and highly efficient solid acid catalyst for the synthesis of benzimidazole derivatives with high isolated yields. Various substituted benzimidazoles were synthesized by a combination of o-phenylenediamines and aldehydes in the presence of [MOEI]-BSA with excellent yields in water a...
متن کاملHighly efficient multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by Al-MCM-41 under solvent-free conditions
In this study, an efficient and green process for the synthesis of dihydropyrimidin-2(1H)-ones from aromatic benzaldehydes, ethyl acetoacetate and urea using Al-MCM-41 as heterogeneous catalyst and microreactor under solvent-free conditions has been developed. The advantages of this method are easy work-up procedure, regeneration of the catalyst, clean and neutral reaction conditions.
متن کاملSiO2-BaCl2 as a Highly Efficient and Reusable Heterogeneous Catalyst for the One-pot Synthesis of 3,4-dihydropyrimidin-2-(1H)- one/thione Derivatives Under Solvent-free Conditions
An efficient protocol for the synthesis of 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives via multi-component coupling reaction of aromatic aldehydes, β-ketoester and urea or thiourea under solvent-free conditions using Silica Supported Barium Chloride as a catalyst is described. All prepared compounds with melting points, IR,1H NMR and 13C NMR were identified. High yields, mild conditi...
متن کاملHighly efficient multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by Al-MCM-41 under solvent-free conditions
In this study, an efficient and green process for the synthesis of dihydropyrimidin-2(1H)-ones from aromatic benzaldehydes, ethyl acetoacetate and urea using Al-MCM-41 as heterogeneous catalyst and microreactor under solvent-free conditions has been developed. The advantages of this method are easy work-up procedure, regeneration of the catalyst, clean and neutral reaction conditions.
متن کامل